A Hierarchical Completeness Proof for Propositional Temporal Logic
نویسنده
چکیده
We present a new proof of axiomatic completeness for Proposition Temporal Logic (PTL) for discrete, linear time for both finite and infinite time (without past-time). This makes use of a natural hierarchy of logics and notions and is an interesting alternative to the proofs in the literature based on tableaux, filtration, game theory and other methods. In particular we exploit the deductive completeness of a sublogic in which the only temporal operator is © (“next”). This yields a proof which is in certain respects more direct and higher-level than previous ones. The presentation also reveals unexpected fundamental links to a natural and preexisting framework for interval-based reasoning and fixpoints of temporal operators.
منابع مشابه
Equality propositional logic and its extensions
We introduce a new formal logic, called equality propositional logic. It has two basic connectives, $boldsymbol{wedge}$ (conjunction) and $equiv$ (equivalence). Moreover, the $Rightarrow$ (implication) connective can be derived as $ARightarrow B:=(Aboldsymbol{wedge}B)equiv A$. We formulate the equality propositional logic and demonstrate that the resulting logic has reasonable properties such a...
متن کاملA Hierarchical Completeness Proof for Propositional Interval Temporal Logic with Finite Time
We present a completeness proof for Propositional Interval Temporal Logic (PITL) with finite time which avoids certain difficulties of conventional methods. It is more gradated than previous efforts since we progressively reduce reasoning within the original logic to simpler reasoning in sublogics. Furthermore, our approach benefits from being less constructive since it is able to invoke certai...
متن کاملAn automata-theoretic decision procedure for propositional temporal logic with since and until
We present an automata-theoretic decision procedure for Since/Until Temporal Logic (SUTL), a linear-time propositional temporal logic with strong non-strict since and until operators. The logic, which is intended for specifying and reasoning about computer systems, employs neither next nor previous operators. Such operators obstruct the use of hierarchical abstraction and reenement and make rea...
متن کاملWeak Completeness Theorem for Propositional Linear Time Temporal Logic
We prove weak (finite set of premises) completeness theorem for extended propositional linear time temporal logic with irreflexive version of until-operator. We base it on the proof of completeness for basic propositional linear time temporal logic given in [20] which roughly follows the idea of the Henkin-Hasenjaeger method for classical logic. We show that a temporal model exists for every fo...
متن کاملThe Properties of Sets of Temporal Logic Subformulas
This is a second preliminary article to prove the completeness theorem of an extension of basic propositional temporal logic. We base it on the proof of completeness for basic propositional temporal logic given in [17]. We introduce two modified definitions of a subformula. In the former one we treat until-formula as indivisible. In the latter one, we extend the set of subformulas of until-form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003